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Abstract: In this paper, we propose a new effective estimator for a class of semiparametric mixture models
where one component has known distribution with possibly unknown parameters while the other component
density and the mixing proportion are unknown. Such semiparametric mixture models have been often used
in multiple hypothesis testing and the sequential clustering algorithm. The proposed estimator is based on the
minimum profile Hellinger distance (MPHD), and its theoretical properties are investigated. In addition, we
use simulation studies to illustrate the finite sample performance of the MPHD estimator and compare it with
some other existing approaches. The empirical studies demonstrate that the new method outperforms existing
estimators when data are generated under contamination and works comparably to existing estimators when
data are not contaminated. Applications to two real data sets are also provided to illustrate the effectiveness
of the new methodology. The Canadian Journal of Statistics 42: 246–267; 2014 © 2014 Statistical Society
of Canada

Résumé: Les auteurs proposent un nouvel estimateur efficace pour une classe de modèles de mélange semi-
paramétriques où l’une des composantes provient d’une distribution connue dont les paramètres peuvent
être inconnus, mais où la distribution des autres composantes et les poids sont inconnus. De tels modèles de
mélange semi-paramétriques sont souvent utilisés pour les tests d’hypothèse multiples et pour l’algorithme
séquentiel de mise en grappe. L’estimateur proposé est basé sur le profil de distance de Hellinger minimal.
Les auteurs étudient les propriétés théoriques de l’estimateur proposé et illustrent sa performance sur des
échantillons de taille finie à l’aide de simulations en le comparant aux approches existantes. Cette étude em-
pirique montre que la nouvelle méthode offre des performances supérieures aux méthodes existantes lorsque
les données sont générées avec de la contamination, et des performances semblables aux méthodes classi-
ques en absence de contamination. Les auteurs illustrent l’efficacité de la nouvelle méthode en l’appliquant
à deux jeux de données réelles. La revue canadienne de statistique 42: 246–267; 2014 © 2014 Société
statistique du Canada

1. INTRODUCTION

The two-component mixture model considered in this paper is defined by

h(x) = πf0(x; ξ) + (1 − π)f (x − μ), x ∈ R, (1)

where f0(x; ξ) is a known probability density function (pdf) with possibly unknown parameter
ξ, f is an unknown pdf with non-null location parameter μ ∈ R and π is the unknown mixing
proportion.
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2014 SEMIPARAMETRIC MIXTURE MODEL 247

Bordes, Delmas, & Vandekerkhove (2006) studied a special case when ξ is assumed to be
known, that is, the first component density is completely known and model (1) becomes

h(x) = πf0(x) + (1 − π)f (x − μ), x ∈ R. (2)

Model (2) is motivated by multiple hypothesis testing to detect differentially expressed genes
under two or more conditions in microarray data. For this purpose, we build a test statistic for
each gene. The test statistics can be considered as coming from a mixture of two distributions: the
known distribution f0 under null hypothesis, and the other distribution f (· − μ), the unknown
distribution of the test statistics under the alternative hypothesis. Please see Section 4 for such an
application on multiple hypothesis testing.

Song, Nicolae, & Song (2010) studied another special case of model (1),

h(x) = πφσ(x) + (1 − π)f (x), x ∈ R, (3)

where φσ is a normal density with mean 0 and unknown standard deviation σ and f (x) is an
unknown density. Model (3) was motivated by a sequential clustering algorithm (Song & Nicolae,
2009), which works by finding a local centre of a cluster first, and then identifying whether an
object belongs to that cluster or not. If we assume that the objects belonging to the cluster come
from a normal distribution with known mean (such as zero) and unknown variance σ2 and that
the objects not belonging to the cluster come from an unknown distribution f , then identifying
the points in the cluster is equivalent to estimating the mixing proportion in model (3).

Bordes, Delmas, & Vandekerkhove (2006) proposed to estimate model (2) based on sym-
metrization of the unknown distribution f and proved the consistency of their estimator. How-
ever, the asymptotic distribution of their estimator has not been provided. Song, Nicolae, &
Song (2010) also proposed an EM-type estimator and a maximizing π-type estimator (inspired
by the constraints imposed to achieve identifiability of the parameters and Swanepoel’s approach
(Swanepoel, 1999)) to estimate model (3) without providing any asymptotic properties.

In this article, we propose a new estimation procedure for the unified model (1) based on mini-
mum profile Hellinger distance (MPHD) (Wu, Schick, & Karunamuni, 2011). We will investigate
the theoretical properties of the proposed MPHD estimator for the semiparametric mixture model,
such as existence, consistency and asymptotic normality. A simple and effective algorithm is also
given to compute the proposed estimator. Using simulation studies, we illustrate the effective-
ness of the MPHD estimator and compare it with the estimators suggested by Bordes, Delmas,
& Vandekerkhove (2006) and Song, Nicolae, & Song (2010). Compared to the existing methods
(Bordes, Delmas, & Vandekerkhove, 2006; Song, Nicolae, & Song, 2010), the new method can
be applied to the more general model (1). In addition, the MPHD estimator works competitively
under semiparametric model assumptions, while it is more robust than the existing methods when
data are contaminated.

Donoho & Liu (1988) have shown that the class of minimum distance estimators has automatic
robustness properties over neighbourhoods of the true model-based on the distance functional
defining the estimator. However, minimum distance estimators typically obtain this robustness
at the expense of not being optimal at the true model. Beran (1977) has suggested the use of
the minimum Hellinger distance (MHD) estimator that has certain robustness properties and is
asymptotically efficient at the true model. For a comparison between MHD estimators, MLEs and
other minimum distance type estimators, and the balance between robustness and efficiency of
estimators, see Lindsay (1994).

There are other well-known robust approaches within the mixture model-based clustering
literature. García-Escudero, Gordaliza, & Matrán (2003) proposed exploratory graphical tools
based on trimming for detecting main clusters in a given dataset, where the trimming is obtained
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by resorting to trimmed k-means methodology. García-Escudero et al. (2008) introduced a new
method for performing clustering with the aim of fitting clusters with different scatters and weights.
García-Escudero et al. (2010) reviewed different robust clustering approaches in the literature,
emphasizing on methods based on trimming which try to discard most outlying data when carrying
out the clustering process. A more recent work by Punzo & McNicholas (2013) introduced a family
of 14 parsimonious mixtures of contaminated Gaussian distributions models within the general
model-based classification framework.

The rest of the article is organized as follows. In Section 2, we introduce the proposed MPHD
estimator and discuss its asymptotic properties. Section 3 presents simulation results for comparing
the new estimation with some existing methods. Applications to two real data sets are also provided
in Section 4 to illustrate the effectiveness of the proposed methodology. A discussion section ends
the paper.

2. MPHD ESTIMATION

2.1. Introduction of MPHD Estimator
In this section, we develop a MPHD estimator for model (1). Let

H = {hθ,f (x) = πf0(x; ξ) + (1 − π)f (x − μ) : θ ∈ �, f ∈ F },
where

� = {θ = (π, ξ, μ) : π ∈ (0, 1), ξ ∈ R, μ ∈ R} ,

F = {f : f ≥ 0,

∫
f (x)dx = 1}

be the functional space for the semiparametric model (1). In practice, the parameter space of ξ

depends on its interpretation. For example, if ξ is the standard deviation of f0, then the parameter
space of ξ will be R+. For model (2), ξ is known and thus the parameter space of ξ is a singleton
and, as a result, θ = (π, μ).

Let ‖·‖ denote the L2(v)-norm. For any g1, g2 ∈ L2(v), the Hellinger distance between them
is defined as

dH(g1, g2) =
∥∥∥g

1/2
1 − g

1/2
2

∥∥∥ .

Suppose a sample X1, X2, ..., Xn is from a population with density function hθ,f ∈ H. We propose
to estimate θ and f by minimizing the Hellinger distance∥∥∥h

1/2
t,l − ĥ1/2

n

∥∥∥ (4)

over all t ∈ � and l ∈ F, where ĥn is an appropriate nonparametric density estimator of hθ,f .
Note that the above objective function (4) contains both the parametric component t and the
nonparametric component l. Here, we propose to use the profile idea to implement the calculation.

For any density function g and t, define functional f (t, g) as

f (t, g) = arg minl∈F

∥∥∥h
1/2
t,l − g1/2

∥∥∥
and then define the profile Hellinger distance as

dPH(t, g) = ‖h1/2
t,f (t,g) − g1/2‖.
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Now the MPHD functional T (g) is defined as

T (g) = arg mint∈�dPH(t, g) = arg mint∈�

∥∥∥h
1/2
t,f (t,g) − g1/2

∥∥∥ . (5)

Given the sample X1, X2, ..., Xn, one can construct an appropriate nonparametric density esti-
mator of hθ,f , say ĥn, and then the proposed MPHD estimator of θ is given by T (ĥn). In the

examples of Sections 3 and 4, we use the kernel density estimator for ĥn and the bandwidth h is
chosen based on Botev, Grotowski, & Kroese (2010).

2.2. Algorithm
In this section, we propose the following two-step algorithm to calculate the MPHD estimator.
Suppose the initial estimates of θ = (π, ξ, μ) and f are θ(0) = (π(0), ξ(0), μ(0)) and f (0).

Step 1: Given π(k), ξ(k) and μ(k), find f (k+1) which minimizes∥∥∥[π(k)f0(·; ξ(k)) + (1 − π(k))f (k+1)(· − μ(k))]1/2 − ĥ1/2
n (·)

∥∥∥ .

Similar to Wu, Schick, & Karunamuni (2011), we obtain that

f (k+1)(x − μ(k)) =
⎧⎨⎩

α

1 − π(k) ĥn(x) − π(k)

1 − π(k) f0(x; ξ(k)), if x ∈ M,

0, if x ∈ MC,

where M = {x : αĥn(x) ≥ π(k)f0(x; ξ(k))} and α = sup
0<α≤1

{π(k) ∫
M

f0(x; ξ(k))dx + (1 −
π(k)) ≥ α

∫
M

ĥn(x)dx}.

Step 2: Given fixed f (k+1), find π(k+1), ξ(k+1) and μ(k+1) which minimize∥∥∥[π(k+1)f0(·; ξ(k+1)) + (1 − π(k+1))f (k+1)(· − μ(k+1))]1/2 − ĥ1/2
n (·)

∥∥∥ . (6)

Then go back to Step 1.

Each of the above two steps monotonically decreases the objective function (4) until conver-
gence. In Step 1, if f (·) is assumed to be symmetric, then we can further symmetrize f (k+1)(·)
as

f̃ (k+1)(x) = f (k+1)(x) + f (k+1)(−x)
2

.

Note that there is no closed form for (6) in Step 2 and thus some numerical algorithms, such
as the Newton–Raphson algorithm, are needed to minimize (6). In our examples, we used the
“fminsearch” function in Matlab to find the minimizer numerically. “fminsearch” function uses
the Nelder–Mead simplex algorithm as described in Lagarias et al. (1998).

2.3. Asymptotic Results
Note that θ and f in the semiparametric mixture model (1) are not generally identifiable without
any assumptions for f . Bordes, Delmas, & Vandekerkhove (2006) showed that model (2) is not
generally identifiable if we do not put any restrictions on the unknown density f , but identifia-
bility can be achieved under some sufficient conditions. One of these conditions is that f (·) is
symmetric about 0. Under these conditions, Bordes, Delmas, & Vandekerkhove (2006) proposed
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an elegant estimation procedure based on the symmetry of f . Song, Nicolae, & Song (2010) also
addressed the non-identifiability problem and noticed that model (3) is not generally identifiable.
However, due to the additional unknown parameter σ in the first component, Song, Nicolae, &
Song (2010) mentioned that it is hard to find the conditions to avoid unidentifiability of model
(3) and proposed using simulation studies to check the performance of the proposed estimators.
Please refer to Bordes, Delmas, & Vandekerkhove (2006) and Song, Nicolae, & Song (2010) for
detailed discussions on the identifiability of model (1).

Next, we discuss some asymptotic properties of the proposed MPHD estimator. Here, for
simplicity of explanation, we will only consider model (2) for which Bordes, Delmas, & Vandek-
erkhove (2006) has proved identifiability. However, we conjecture that all the results presented
in this section also apply to the unified model (1) when it is identifiable. But this is beyond the
scope of the article and requires more research to find the identifiable conditions for the general
model (1).

The next theorem gives results on the existence and uniqueness of the proposed estimator, and
the continuity of the functional defined in (5), which is in line with Theorem 1 of Beran (1977).

Theorem 1. With T defined by (5), if model (2) is identifiable, then we have

1. For every hθ,f ∈ H, there exists T (hθ,f ) ∈ � satisfying (5);
2. T (hθ,f ) = θ uniquely for any θ ∈ �;

3. T (hn) → T (hθ,f ) for any sequences {hn}n∈N such that
∥∥∥h

1/2
n − h

1/2
θ,f

∥∥∥ → 0 and supt∈�∥∥∥ht,f (t,hn) − ht,f (t,hθ,f
)

∥∥∥ → 0

as n → ∞.

Remark 1. Without the global identifiability of model (2), the local identifiability of model (2)
proved by Bordes, Delmas, & Vandekerkhove (2006) tells that there exists one solution that has
the asymptotic properties presented in Theorem 1.

Define a kernel density estimator based on X1, X2, ..., Xn as

ĥn(x) = 1
ncnsn

n∑
i=1

K

(
x − Xi

cnsn

)
, (7)

where {cn} is a sequence of constants (bandwidths) converging to zero at an appropriate rate and
sn is a robust scale statistic. Under further conditions on the kernel density estimator defined in
(7), the consistency of the MPHD estimator is established in the next theorem.

Theorem 2. Suppose that

1. The kernel function K(·) is absolutely continuous and bounded with compact support.
2. limn→∞ cn = 0, limn→∞ n1/2cn = ∞.
3. The model (2) is identifiable and hθ,f is uniformly continuous.

Then ‖ĥ1/2
n − h

1/2
θ,f

‖ p→ 0 as n → ∞, and therefore T (ĥn)
p→ T (hθ,f ) as n → ∞.

Define the map θ �→ sθ,g as sθ,g = h
1/2
θ,f (θ,g)

, and suppose that for θ ∈ � there exists a 2 × 1
vector ṡθ,g with components in L2 and a 2 × 2 matrix s̈θ,g with components in L2 such that for
every 2 × 1 real vector e of unit Euclidean length and for every scalar α in a neighborhood of
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zero,

sθ+αe,g(x) = sθ,g(x) + αeT ṡθ,g(x) + αeT uα,g(x), (8)

ṡθ+αe,g(x) = ṡθ,g(x) + αs̈θ,g(x)e + αvα,g(x)e, (9)

where uα,g(x) is 2 × 1, vα,g(x) is 2 × 2, and the components of uα,g and vα,g tend to zero in L2
as α → 0.

The next theorem shows that the MPHD estimator has an asymptotic normal distribution.

Theorem 3. Suppose that

1. Model (2) is identifiable.
2. The conditions in Theorem 2 hold.
3. The map θ �→ sθ,g satisfies (8) and (9) with continuous gradient vector ṡθ,g and continuous

Hessian matrix s̈θ,g in the sense that ‖ṡθn,gn
− ṡθ,g‖ → 0 and ‖s̈θn,gn

− s̈θ,g‖ → 0 whenever

θn → θ and ‖g1/2
n − g1/2‖ → 0 as n → ∞.

4. < s̈θ,hθ,f

, h
1/2
θ,f

> is invertible.

Then, with T defined in (5) for model (2), the asymptotic distribution of n1/2(T (ĥn) − T (hθ,f ))
is N(0, �) with variance matrix � defined by

� =< s̈θ,hθ,f

, h
1/2
θ,f

>−1< ṡθ,hθ,f

, ṡTθ,hθ,f

>< s̈θ,hθ,f

, h
1/2
θ,f

>−1 .

3. SIMULATION STUDIES

In this section, we investigate the finite sample performance of the proposed MPHD estimator and
compare it to Maximizing-π type estimator (Song, Nicolae, & Song, 2010), EM-type estimator
(Song, Nicolae, & Song, 2010) and Symmetrization estimator (Bordes, Delmas, & Vandekerkhove,
2006) under both models (2) and (3).

Model (3) that Song, Nicolae, & Song (2010) considered does not have a location parameter in
the second component. However, we can equivalently replace f (x) with f (x − μ), where μ ∈ R
is a location parameter. Throughout this section, we will consider this equivalent form of (3).
Under this model, after we have π̂ and σ̂, we can simply estimate μ by

μ̂ =
∑n

i=1 (1 − Ẑi)Xi∑n
i=1 (1 − Ẑi)

,

where

Ẑi = 2π̂φσ̂(Xi)

π̂φσ̂(Xi) + ĥ(Xi)
.

We first compare the performance of different estimators under model (2). Suppose
(X1, . . . , Xn) are generated from one of the following five cases:

Case I: X ∼ 0.3N(0, 1) + 0.7N(1.5, 1) ⇒ (π, μ) = (0.3, 1.5),
Case II: X ∼ 0.3N(0, 1) + 0.7N(3, 1) ⇒ (π, μ) = (0.3, 3),
Case III: X ∼ 0.3N(0, 1) + 0.7U(2, 4) ⇒ (π, μ) = (0.3, 3),
Case IV: X ∼ 0.7N(0, 4) + 0.3N(3, 1) ⇒ (π, μ) = (0.7, 3),
Case V: X ∼ 0.85N(0, 4) + 0.15N(3, 1) ⇒ (π, μ) = (0.85, 3).
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Figure 1: Density plots of: (a) Case I; (b) Case II; (c) Case III; (d) Case IV and (e) Case V.

Figure 1 shows the density plots of the five cases. Cases I, II and III are the models used by
Song, Nicolae, & Song (2010) to show the performance of their Maximizing-π type and EM-type
estimators. Case I represents the situation when two components are close, and Case II represents
the situation when two components are apart. Cases IV and V are suggested by Bordes, Delmas,
& Vandekerkhove (2006) to show the performance of their semiparametric EM algorithm. In
addition, we also consider the corresponding contaminated models by adding 2% outliers from
U(10, 20) to the above five models.

Tables 1, 2 and 3 report the bias and MSE of the parameter estimates of (π, μ) for the four
methods when n = 100, n = 250 and n = 1, 000, respectively, based on 200 repetitions. Tables 4,
5 and 6 report the respective results for n = 100, n = 250 and n = 1, 000 when the data are under
2% contamination from U(10, 20). The best values are highlighted in bold. From the six tables,
we can see that the MPHD estimator has better overall performance than the Maximizing-π type,
the EM-type and the Symmetrization estimators, especially when sample size is large. When the
sample is not contaminated by outliers, the MPHD estimator and the Symmetrization estimator

Table 1: Bias (MSE) of point estimates for model (2) over 200 repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.092(0.030) 0.057(0.011) 0.271(0.078) 0.003(0.009)

μ : 1.5 −0.113(0.118) 0.196(0.070) 0.465(0.239) 0.020(0.026)

II π : 0.3 −0.014(0.003) −0.052(0.005) 0.027(0.003) −0.002(0.003)

μ : 3 −0.000(0.021) −0.123(0.038) 0.020(0.017) −0.009(0.025)

III π : 0.3 −0.046(0.005) −0.108(0.014) −0.045(0.005) 0.001(0.003)

μ : 3 −0.008(0.004) −0.341(0.138) −0.212(0.058) −0.002(0.006)

IV π : 0.7 −0.044(0.015) −0.131(0.025) 0.086(0.010) −0.089(0.028)

μ : 3 0.173(0.247) −0.697(0.659) −0.053(0.177) −0.326(0.465)

V π : 0.85 −0.094(0.041) −0.147(0.030) 0.039(0.003) −0.106(0.024)

μ : 3 0.109(1.145) −1.375(2.298) −0.697(1.136) −0.742(1.184)
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Table 2: Bias (MSE) of point estimates for model (2) over 200 repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.090(0.028) 0.028(0.005) 0.269(0.074) −0.080(0.021)

μ : 1.5 −0.110(0.084) 0.162(0.041) 0.472(0.231) −0.107(0.060)

II π : 0.3 −0.009(0.001) −0.058(0.005) 0.034(0.002) −0.001(0.001)

μ : 3 0.007(0.007) −0.118(0.027) 0.057(0.009) −0.004(0.009)

III π : 0.3 −0.041(0.003) −0.071(0.006) −0.016(0.001) −0.001(0.001)

μ : 3 −0.001(0.001) −0.188(0.043) −0.082(0.010) −0.001(0.002)

IV π : 0.7 −0.009(0.003) −0.108(0.018) 0.102(0.012) −0.017(0.009)

μ : 3 0.131(0.067) −0.618(0.501) 0.063(0.069) −0.095(0.159)

V π : 0.85 −0.040(0.014) −0.121(0.021) 0.052(0.003) −0.041(0.011)

μ : 3 0.217(0.444) −1.134(1.503) −0.323(0.349) −0.345(0.625)

are very competitive and perform better than other estimators. When the sample is contaminated
by outliers, the MPHD estimator performs much better and therefore is more robust than the
other three methods. We also observe that when the sample is contaminated by outliers, among
the Maximizing-π type, the EM-type and the Symmetrization estimators, the EM-type estimator
tends to give better mixing proportion estimates than the other two.

Next, we also evaluate how the MPHD estimator performs under model (3), where the variance
σ2 is assumed to be unknown, and compare it with other methods using the same five cases as in
Tables 1–6.

Tables 7, 8 and 9 report the bias and MSE of the parameter estimates for n = 100, n = 250
and n = 1, 000, respectively, when there are no contaminations. Based on these three tables,

Table 3: Bias (MSE) of point estimates for model (2) over 200 repetitions with n = 1, 000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.009(0.005) −0.020(0.003) 0.263(0.069) −0.024(0.005)

μ : 1.5 0.003(0.016) 0.083(0.017) 0.459(0.213) −0.031(0.015)

II π : 0.3 −0.006(0.001) −0.055(0.004) 0.039(0.002) −0.003(0.001)

μ : 3 0.006(0.002) −0.083(0.016) 0.093(0.010) −0.002(0.002)

III π : 0.3 −0.028(0.001) −0.061(0.005) −0.004(0.001) 0.000(0.001)

μ : 3 −0.003(0.001) −0.153(0.029) −0.044(0.002) −0.002(0.001)

IV π : 0.7 −0.008(0.001) −0.115(0.020) 0.104(0.011) −0.007(0.001)

μ : 3 0.045(0.013) −0.554(0.400) 0.174(0.039) −0.030(0.017)

V π : 0.85 −0.007(0.001) −0.101(0.016) 0.061(0.004) −0.007(0.002)

μ : 3 0.172(0.063) −0.929(1.043) 0.019(0.067) −0.066(0.104)
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Table 4: Bias (MSE) of point estimates for model (2), under 2% contamination from U(10, 20), over 200
repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.124(0.036) 0.060(0.010) 0.267(0.075) −0.063(0.014)

μ : 1.5 −0.163(0.128) 0.692(0.629) 1.079(1.348) −0.031(0.015)

II π : 0.3 −0.029(0.005) −0.055(0.006) 0.018(0.004) −0.300(0.090)

μ : 3 −0.011(0.046) 0.252(0.136) 0.398(0.228) −3.000(9.000)

III π : 0.3 −0.034(0.003) −0.108(0.015) −0.048(0.005) −0.032(0.004)

μ : 3 −0.011(0.004) −0.034(0.080) 0.104(0.091) −0.014(0.009)

IV π : 0.7 −0.054(0.020) −0.133(0.027) 0.081(0.009) −0.200(0.083)

μ : 3 0.152(0.389) 0.172(0.668) 1.141(2.123) −0.582(0.867)

V π : 0.85 −0.125(0.071) −0.158(0.033) 0.024(0.002) −0.217(0.080)

μ : 3 0.048(1.364) −0.007(1.314) 1.373(4.337) −0.910(1.444)

we can see that when there are no contaminations, the MPHD estimator and the Symmetrization
estimator perform better than the Maximizing-π type estimator and the EM-type estimator. Tables
10, 11 and 12 report the results when models are under 2% contamination from U(10, 20) for
n = 100, n = 250 and n = 1, 000, respectively. From these three tables, we can see that the
MPHD estimator performs much better again than the other three methods.

To see the comparison and difference better, we also plot in Figures 2–4 the results reported
in Tables 6 and 9. Figure 2 contains the MSE of point estimates of μ that are presented in Table 9
for model (3) (σ unknown) and Figures 3 and 4 contain the MSEs of point estimates of μ and π,
respectively, that are presented in Table 6 for model (2) (σ known), under 2% contamination from

Table 5: Bias (MSE) of point estimates for model (2), under 2% contamination from U(10, 20), over 200
repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.090(0.026) 0.032(0.006) 0.263(0.071) −0.180(0.043)

μ : 1.5 −0.102(0.085) 0.613(0.434) 1.043(1.146) −0.224(0.081)

II π : 0.3 −0.019(0.001) −0.065(0.006) 0.027(0.002) −0.044(0.003)

μ : 3 −0.009(0.007) 0.213(0.076) 0.415(0.202) −0.044(0.012)

III π : 0.3 −0.021(0.001) −0.073(0.007) −0.015(0.001) −0.028(0.002)

μ : 3 −0.004(0.001) 0.119(0.043) 0.245(0.086) −0.011(0.003)

IV π : 0.7 −0.020(0.005) −0.122(0.021) 0.086(0.009) −0.302(0.164)

μ : 3 0.149(0.096) 0.162(0.296) 1.149(1.594) −0.746(1.137)

V π : 0.85 −0.053(0.025) −0.131(0.023) 0.034(0.002) −0.311(0.140)

μ : 3 0.220(0.513) 0.358(1.000) 1.859(4.597) −1.093(1.785)
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Table 6: Bias (MSE) of point estimates for model (2), under 2% contamination from U(10, 20), over 200
repetitions with n = 1, 000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.460(0.007) −0.024(0.003) 0.255(0.065) −0.240(0.059)

μ : 1.5 −0.056(0.019) 0.509(0.284) 1.048(1.119) −0.313(0.103)

II π : 0.3 −0.014(0.001) −0.057(0.004) 0.032(0.001) −0.043(0.002)

μ : 3 0.001(0.002) 0.257(0.081) 0.444(0.204) −0.034(0.005)

III π : 0.3 −0.019(0.001) −0.066(0.005) −0.011(0.001) −0.035(0.002)

μ : 3 −0.001(0.001) 0.179(0.044) 0.299(0.096) −0.011(0.001)

IV π : 0.7 −0.019(0.001) −0.128(0.023) 0.089(0.008) −0.311(0.149)

μ : 3 0.067(0.013) 0.203(0.257) 1.252(1.628) −0.829(1.165)

V π : 0.85 −0.019(0.001) −0.112(0.018) 0.045(0.002) −0.347(0.134)

μ : 3 0.177(0.067) 0.574(0.836) 2.275(5.478) −1.466(2.329)

U(10, 20). From the three plots, we can see that all four estimators perform well in Cases II and
III. The EM-type estimator performs poorly in Case I, and is the worst estimate of μ in Cases IV
and V when data are contaminated. The Symmetrization estimator is sensitive to contamination,
especially in Cases IV and V, no matter σ is known or not. Comparatively, the Maximizing-π

Table 7: Bias (MSE) of point estimates for model (3) over 200 repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.058(0.021) 0.110(0.021) 0.302(0.097) −0.047(0.015)

σ : 1 0.052(0.045) 0.758(2.207) 0.143(0.042) −0.047(0.071)

μ : 1.5 −0.057(0.082) 0.098(0.095) 0.463(0.242) −0.055(0.061)

II π : 0.3 −0.008(0.004) 0.062(0.017) 0.082(0.014) −0.006(0.004)

σ : 1 0.095(0.041) 1.821(5.180) 0.331(0.252) 0.012(0.056)

μ : 3 −0.014(0.025) −0.341(0.216) 0.081(0.031) −0.032(0.030)

III π : 0.3 −0.051(0.005) 0.024(0.011) −0.042(0.006) −0.009(0.003)

σ : 1 −0.101(0.030) 2.258(6.708) −0.028(0.105) −0.031(0.045)

μ : 3 −0.021(0.005) −0.436(0.223) −0.187(0.049) −0.008(0.008)

IV π : 0.7 −0.014(0.011) −0.060(0.012) 0.114(0.016) −0.054(0.018)

σ : 2 0.101(0.047) 0.195(0.161) 0.120(0.034) 0.039(0.065)

μ : 3 0.100(0.201) −0.537(0.504) 0.019(0.175) −0.320(0.511)

V π : 0.85 −0.028(0.009) −0.076(0.014) 0.042(0.003) −0.159(0.078)

σ : 2 0.098(0.043) 0.179(0.100) −0.006(0.021) −0.118(0.247)

μ : 3 0.275(0.432) −1.080(1.719) −0.622(1.088) −0.845(1.717)
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Table 8: Bias (MSE) of point estimates for model (3) over 200 repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.043(0.014) 0.064(0.006) 0.302(0.093) −0.048(0.015)

σ : 1 0.058(0.021) −0.101(0.075) 0.157(0.032) 0.020(0.033)

μ : 1.5 −0.064(0.051) 0.220(0.059) 0.421(0.186) −0.079(0.049)

II π : 0.3 −0.005(0.001) −0.028(0.003) 0.093(0.011) −0.002(0.001)

σ : 1 0.046(0.013) 0.330(0.912) 0.377(0.191) −0.001(0.021)

μ : 3 −0.005(0.010) −0.129(0.054) 0.121(0.022) −0.017(0.011)

III π : 0.3 −0.037(0.002) −0.043(0.004) 0.005(0.002) 0.002(0.001)

σ : 1 −0.061(0.013) 0.609(1.741) 0.163(0.100) 0.013(0.022)

μ : 3 −0.006(0.001) −0.233(0.085) −0.069(0.009) 0.001(0.002)

IV π : 0.7 −0.008(0.003) −0.068(0.009) 0.121(0.016) −0.014(0.007)

σ : 2 0.036(0.023) 0.023(0.035) 0.142(0.028) 0.009(0.032)

μ : 3 0.108(0.054) −0.437(0.269) 0.153(0.067) −0.070(0.140)

V π : 0.85 −0.014(0.003) −0.076(0.010) 0.060(0.004) −0.076(0.028)

σ : 2 0.093(0.027) 0.069(0.035) 0.046(0.011) 0.027(0.048)

μ : 3 0.115(0.205) −0.912(1.024) −0.222(0.266) −0.573(0.981)

Table 9: Bias (MSE) of point estimates for model (3) over 200 repetitions with n = 1, 000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.019(0.005) 0.053(0.004) 0.301(0.091) −0.020(0.005)

σ : 1 0.040(0.008) −0.147(0.028) 0.177(0.034) 0.025(0.011)

μ : 1.5 −0.019(0.017) 0.236(0.059) 0.423(0.181) −0.024(0.018)

II π : 0.3 −0.001(0.001) −0.037(0.002) 0.099(0.010) 0.000(0.001)

σ : 1 0.017(0.003) −0.044(0.007) 0.407(0.176) −0.002(0.005)

μ : 3 0.009(0.002) −0.042(0.005) 0.151(0.025) 0.003(0.002)

III π : 0.3 −0.029(0.001) −0.047(0.003) 0.011(0.001) 0.001(0.001)

σ : 1 −0.051(0.005) −0.029(0.007) 0.177(0.044) 0.005(0.004)

μ : 3 −0.003(0.001) −0.122(0.017) −0.031(0.002) −0.001(0.001)

IV π : 0.7 −0.008(0.001) −0.069(0.006) 0.125(0.016) −0.004(0.001)

σ : 2 0.002(0.006) −0.051(0.013) 0.172(0.032) −0.001(0.006)

μ : 3 0.058(0.017) −0.346(0.153) 0.161(0.035) −0.018(0.015)

V π : 0.85 −0.003(0.001) −0.067(0.006) 0.072(0.005) −0.025(0.010)

σ : 2 0.053(0.009) −0.005(0.008) 0.087(0.010) 0.008(0.031)

μ : 3 0.099(0.042) −0.745(0.633) 0.135(0.060) −0.180(0.293)
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Table 10: Bias (MSE) of point estimates for model (3), under 2% contamination from U(10, 20), over 200
repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.104(0.025) 0.102(0.018) 0.295(0.093) −0.132(0.031)

σ : 1 0.132(0.090) 0.680(1.919) 0.133(0.046) −0.213(0.150)

μ : 1.5 −0.148(0.088) 0.591(0.560) 1.115(1.507) −0.137(0.068)

II π : 0.3 −0.022(0.005) 0.051(0.016) 0.067(0.011) −0.062(0.010)

σ : 1 0.081(0.034) 1.755(5.036) 0.301(0.235) −0.244(0.121)

μ : 3 −0.025(0.036) 0.053(0.180) 0.467(0.323) −0.079(0.051)

III π : 0.3 −0.036(0.003) 0.019(0.012) −0.036(0.005) −0.046(0.006)

σ : 1 −0.061(0.019) 2.229(6.635) 0.025(0.102) −0.201(0.076)

μ : 3 −0.022(0.004) −0.116(0.114) 0.144(0.085) −0.034(0.009)

IV π : 0.7 −0.033(0.017) −0.066(0.013) 0.099(0.013) −0.110(0.033)

σ : 2 0.088(0.058) 0.184(0.147) 0.104(0.032) −0.152(0.110)

μ : 3 0.103(0.262) 0.449(0.928) 1.209(2.263) −0.226(0.354)

V π : 0.85 −0.045(0.023) −0.084(0.014) 0.024(0.002) −0.198(0.106)

σ : 2 0.145(0.082) 0.222(0.135) −0.013(0.027) −0.172(0.199)

μ : 3 0.379(2.637) 0.646(2.505) 1.235(3.351) −0.501(1.258)

type estimator is more robust, but it does not perform well in Cases IV and V when data are not
under contamination. However, the MPHD estimator performs well in all cases.

4. REAL DATA APPLICATION

Example 1(Iris data). We illustrate the application of the new estimation procedure to the sequen-
tial clustering algorithm using the Iris data, which are perhaps one of the best known data sets in
pattern recognition literature. Iris data were first introduced by Fisher (1936) and are referenced
frequently to this day. These data contain four attributes: sepal length (in cm), sepal width (in
cm), petal length (in cm) and petal width (in cm), and there are three classes of 50 instances each,
where each class refers to a type of Iris plant. One class is linearly separable from the other two
and the latter are not linearly separable from each other.

Assuming the class indicators are unknown, we want to recover the three clusters in the data.
After applying the search algorithm for centres of clusters by Song, Nicolae, & Song (2010),
observation 8 is selected as the centre of the first cluster. We adjust all observations by subtracting
observation 8 from each observation. As discussed by Song, Nicolae, & Song (2010), the propor-
tion of observations that belong to a cluster can be considered as the mixing proportion in the
two-component semiparametric mixture model (3).

Principal component analysis shows that the first principal component accounts for 92.46% of
the total variability, so it would seem that the Iris data tend to fall within a 1-dimensional subspace
of the 4-dimensional sample space. Figure 5 is a histogram of the first principal component.
From the histogram, we can see that the first cluster is separated from the rest of the data, with
observation 8 (first principal component score equals −2.63) being the centre of it. The first
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Table 11: Bias (MSE) of point estimates for model (3), under 2% contamination from U(10, 20), over 200
repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.108(0.024) 0.060(0.006) 0.292(0.087) −0.164(0.038)

σ : 1 0.103(0.056) −0.015(0.184) 0.155(0.031) −0.216(0.116)

μ : 1.5 −0.145(0.070) 1.697(0.550) 1.085(1.277) −0.177(0.067)

II π : 0.3 −0.011(0.001) −0.033(0.003) 0.087(0.009) −0.049(0.005)

σ : 1 0.056(0.014) 0.306(0.843) 0.400(0.204) −0.195(0.062)

μ : 3 −0.011(0.012) 0.245(0.115) 0.525(0.316) −0.047(0.016)

III π : 0.3 −0.025(0.001) −0.073(0.008) −0.723(0.002) −0.042(0.003)

σ : 1 −0.057(0.012) 1.125(3.379) 0.081(0.055) −0.203(0.056)

μ : 3 −0.008(0.001) −0.068(0.060) 0.207(0.073) −0.029(0.004)

IV π : 0.7 −0.024(0.004) −0.089(0.012) 0.102(0.011) −0.077(0.013)

σ : 2 0.010(0.018) 0.035(0.041) 0.138(0.028) −0.213(0.078)

μ : 3 0.118(0.064) 0.406(0.435) 1.339(2.125) −0.032(0.084)

V π : 0.85 −0.027(0.006) −0.098(0.014) 0.037(0.002) −0.114(0.038)

σ : 2 0.052(0.029) 0.069(0.034) 0.041(0.010) −0.193(0.099)

μ : 3 0.215(0.228) 0.715(1.406) 1.963(4.889) −0.130(0.460)

principal component loading vector is (0.36, −0.08, 0.86, 0.35), which implies that the petal
length contains most of the information. We apply each of the four estimation methods discussed
above to the first principal component. Note, however, that the leading principal components are
not necessary to have better clustering information than other components. Some cautious are
needed when using principal components in clustering applications.

Similar to Song, Nicolae, & Song (2010), in Table 13, we report the estimates of proportion
based on the first principal component. Noting that the true proportion is 1/3, we can see that the
MPHD and the Symmetrization estimators perform better than the other two estimators.

Example 2 (Breast cancer data). Next, we illustrate the application of the new estimation
procedure to multiple hypothesis testing using the breast cancer data from Hedenfalk et al. (2001),
who examined gene expressions in breast cancer tissues from women who were carriers of the
hereditary BRCA1 or BRCA2 gene mutations, predisposing to breast cancer. The breast cancer
data were downloaded from “http://research.nhgri.nih.gov/microarray/NEJM Supplement/" and
contains gene expression ratios derived from the fluorescent intensity (proportional to the gene
expression level) from a tumour sample divided by the fluorescent intensity from a common
reference sample (MCF-10A cell line). The ratios were normalized (or calibrated) such that the
majority of the gene expression ratios from a pre-selected internal control gene set was around
1.0, but no log-transformation was used. The data set consists of 3,226 genes on n1 = 7 BRCA1
arrays and n2 = 8 BRCA2 arrays. If any gene had one or more measurement exceeding 20, then
this gene was eliminated (Storey & Tibshirani, 2003). This left 3,170 genes. The p-values were
calculated based on permutation tests (Storey & Tibshirani, 2003). We then transform the p-values
via the probit transformation to z-score, given by zi = 	−1(1 − pi) (McLachlan & Wockner,
2010). Figure 6 displays the fitted densities, and Table 14 lists the parameter estimates of the four
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Table 12: Bias (MSE) of point estimates for model (3), under 2% contamination from U(10, 20), over 200
repetitions with n = 1, 000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 −0.083(0.015) 0.049(0.003) 0.291(0.085) −0.211(0.051)

σ : 1 0.099(0.026) −0.128(0.022) 0.178(0.033) −0.096(0.050)

μ : 1.5 −0.116(0.039) 0.706(0.515) 1.068(1.162) −0.258(0.085)

II π : 0.3 −0.012(0.001) −0.042(0.002) 0.092(0.009) −0.05(0.003)

σ : 1 0.025(0.003) −0.031(0.007) 0.422(0.189) −0.199(0.045)

μ : 3 −0.008(0.002) 0.299(0.099) 0.537(0.297) −0.047(0.005)

III π : 0.3 −0.021(0.001) −0.053(0.003) 0.004(0.001) −0.042(0.002)

σ : 1 −0.040(0.004) −0.033(0.006) 0.185(0.050) −0.194(0.042)

μ : 3 −0.004(0.001) 0.208(0.049) 0.302(0.099) −0.02(0.001)

IV π : 0.7 −0.017(0.001) −0.079(0.008) 0.110(0.012) −0.059(0.004)

σ : 2 −0.019(0.004) −0.045(0.013) 0.178(0.034) −0.187(0.042)

μ : 3 0.094(0.020) 0.493(0.324) 1.386(2.005) 0.024(0.012)

V π : 0.85 −0.019(0.001) −0.081(0.008) 0.053(0.003) −0.070(0.008)

σ : 2 0.013(0.004) −0.008(0.007) 0.083(0.009) −0.167(0.034)

μ : 3 0.193(0.064) 0.909(1.093) 2.559(6.866) 0.038(0.068)

methods discussed in the article. MPHD estimator shows that among the 3170 genes examined,
around 29% genes are differentially expressed between those tumour types, which is close to
the 33% from Storey & Tibshirani (2003) and 32.5% from Langaas, Lindqvist, & Ferkingstad
(2005).

Let

τ̂0(zi) = π̂φσ̂(zi)/[π̂φσ̂(zi) + (1 − π̂)f̂ (zi − μ̂)]

be the classification probability that the ith gene is not differentially expressed. Then we select all
genes with τ̂0(zi) ≤ c to be differentially expressed. The threshold c can be selected by controlling
the false discovery rate (FDR, Benjamini & Hochberg, 1995). Based on McLachlan, Bean, & Jones
(2006), the FDR can be estimated by

F̂DR = 1
Nr

∑
i

τ̂0(zi)I[0,c0]τ̂0(zi),

where Nr = ∑
i I[0,c0]τ̂0(zi) is the total number of found differentially expressed genes and IA(x)

is the indicator function, which is one if x ∈ A and is zero otherwise. Table 15 reports the number
of selected differentially expressed genes (Nr) and the estimated false discovery rate (FDR) for
different threshold c values based on MPHD estimate. For comparison, we also include the results
of McLachlan & Wockner (2010), which assumes a two-component mixture of heterogeneous
normals (MLE) for zis.
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Figure 2: MSE of point estimates of μ of model (3), over 200 repetitions with n = 1, 000.

5. DISCUSSION

In this paper, we proposed a MPHD estimator for a class of semiparametric mixture models and
investigated its existence, consistency and asymptotic normality. Simulation study shows that the
MPHD estimator outperforms existing estimators when data are under contamination, while it
performs competitively to other estimators when there is no contamination.

Figure 3: MSE of point estimates of μ of model (2), under 2% contamination from U(10, 20), over 200
repetitions with n = 1, 000.
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Figure 4: MSE of point estimates of π of model (2), under 2% contamination from U(10, 20), over 200
repetitions with n = 1, 000.

We indicated two fields of application of the model. The first is microarray data analysis, which
is the initial motivation of introducing model (2) (see Bordes, Delmas, & Vandekerkhove, 2006).
The second is sequential clustering algorithm, which is the initial motivation of introducing model
(3) (see Song, Nicolae, & Song, 2010). Two real data applications are also provided to illustrate
the effectiveness of the proposed methodology.

Figure 5: Histogram of the first principal component in the Iris data.
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Table 13: Estimates of first principal component in Iris data.

Variable True value MPHD Maximizing π-type EM-type Symmetrization

π 0.3000 0.3195 0.3986 0.2896 0.3266

σ 0.2208 0.2457 4.0000 0.1629 0.2055

μ 3.9469 3.9526 2.6240 3.6979 3.9077

In this article, we only considered the asymptotic results for model (2), since its identifiability
property has been established by Bordes, Delmas, & Vandekerkhove (2006). When the first
component of the general model (1) has normal distribution, empirical studies demonstrated the
success of proposed MPHD estimator. We conjecture that the asymptotic results of MPHD also
apply to the more general model (1) when it is identifiable. However, it requires further research to
find sufficient conditions for the identifiability of model (1). In addition, more work remains to be
done on the application of MPHD estimation in regression settings such as mixture of regression
models.

Figure 6: Breast cancer data: plot of fitted two-component mixture model with theoretical N(0, 1) null
and non-null component (weighted respectively by π̂ and (1 − π̂)) imposed on histogram of z-score.

Table 14: Parameter estimates for the breast cancer data.

Variable MPHD Maximizing π-type EM-type Symmetrization

π 0.7109 0.6456 0.8365 0.5027

σ 1.0272 1 1.1441 1.0773

μ 1.8027 1.6756 1.9366 1.0765

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2014 SEMIPARAMETRIC MIXTURE MODEL 263

Table 15: Estimated FDR for various levels of the threshold c applied to the posterior probability of
nondifferentially expression for the breast cancer data.

MLE MPHD

c Nr F̂DR Nr F̂DR

0.1 143 0.06 179 0.052

0.2 338 0.11 320 0.093

0.3 539 0.16 477 0.144

0.4 743 0.21 624 0.193

0.5 976 0.27 780 0.244

APPENDIX
The proofs of Theorems 1, 2 and 3 are presented in this section.

Proof of Theorem 1. The method of proof is similar to that of Theorem 2.1 of Beran (1977).

(1) Let d(t) =
∥∥∥∥h

1/2
t,f (t,hθ,f

) − h
1/2
θ,f

∥∥∥∥. For any sequence {tn : tn ∈ �, tn → t as n → ∞},

|d2(tn) − d2(t)| =
∣∣∣∣∫ (h1/2

tn,f (tn,hθ,f
)(x) − h

1/2
θ,f

(x))2dx −
∫

(h1/2
t,f (t,hθ,f

)(x) − h
1/2
θ,f

(x))2dx

∣∣∣∣
= 2

∣∣∣∣∫ (h1/2
tn,f (tn,hθ,f

)(x) − h
1/2
t,f (t,hθ,f

)(x))h1/2
θ,f

(x)dx

∣∣∣∣
≤ 2

∥∥∥∥h
1/2
tn,f (tn,hθ,f

) − h
1/2
t,f (t,hθ,f

)

∥∥∥∥ .

Since
∫

htn,f (tn,hθ,f
)(x)dx = ∫

ht,f (t,hθ,f
)(x)dx = 1, we have

∥∥∥∥h
1/2
tn,f (tn,hθ,f

) − h
1/2
t,f (t,hθ,f

)

∥∥∥∥2

=
∫ [

h
1/2
tn,f (tn,hθ,f

)(x) − h
1/2
t,f (t,hθ,f

)(x)
]2

dx

≤
∫ ∣∣∣ht,f (t,hθ,f

)(x) − htn,f (tn,hθ,f
)(x)

∣∣∣ dx

= 2
∫ [

ht,f (t,hθ,f
)(x) − htn,f (tn,hθ,f

)(x)
]+

dx.

Also, [ht,f (t,hθ,f
)(x) − htn,f (tn,hθ,f

)(x)]+ ≤ ht,f (t,hθ,f
)(x), and ht,f (t,hθ,f

)(x) is continuous in t for

every x. Thus, by the Dominated Convergence Theorem, ‖h1/2
tn,f (tn,hθ,f

) − h
1/2
t,f (t,hθ,f

)‖ → 0 as

n → ∞. So, d(tn) → d(t) as n → ∞, that is, d is continuous on � and achieves a minimum for
t ∈ �.

(2) By assumption, hθ,f is identifiable. Immediately, we have T (hθ,f ) = θ uniquely.
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(3) Let dn(t) = ‖h1/2
t,f (t,hn) − h

1/2
n ‖ and d(t) = ‖h1/2

t,f (t,hθ,f
) − h

1/2
θ,f

‖. By Minkowski’s inequal-

ity,

|dn(t) − d(t)| =
∣∣∣∣∣
[∫

(h1/2
t,f (t,hn)(x) − h1/2

n (x))2dx

]1/2

−
[∫

(h1/2
t,f (t,hθ,f

)(x) − h
1/2
θ,f

(x))2dx

]1/2
∣∣∣∣∣

≤
{∫ [

h
1/2
t,f (t,hn)(x) − h1/2

n (x) − h
1/2
t,f (t,hθ,f

)(x) + h
1/2
θ,f

(x)
]2

dx

}1/2

≤
{

2
∫ [

h
1/2
t,f (t,hn)(x) − h

1/2
t,f (t,hθ,f

)(x)
]2

dx + 2
∫ [

h1/2
n (x) − h

1/2
θ,f

(x)
]2

dx

}1/2

Consequently,

sup
t∈�

|dn(t) − d(t)| ≤
{

2 sup
t∈�

∫ [
h

1/2
t,f (t,hn)(x) − h

1/2
t,f (t,hθ,f

)(x)
]2

dx

+ 2
∫ [

h1/2
n (x) − h

1/2
θ,f

(x)
]2

dx

}1/2

, (10)

and the right-hand side of (10) goes to zero as n → ∞ by assumptions. Then with θ0 = T (hθ,f )
and θn = T (hn), we have dn(θ0) → d(θ0) and dn(θn) − d(θn) → 0 as n → ∞.

If θn � θ0, then there exists a subsequence {θm} ⊆ {θn} such that θm → θ′ 
= θ0, implying
that θ′ ∈ � and d(θm) → d(θ′) by the continuity of d. From the above result, we have dm(θm) −
dm(θ0) → d(θ′) − d(θ0). By the definition of θm, dm(θm) − dm(θ0) ≤ 0, and therefore, d(θ′) −
d(θ0) ≤ 0. However, by the definition of θ0 and the uniqueness of it, d(θ′) > d(θ0). This is a
contradiction, and therefore θn → θ0. �

Proof of Theorem 2. Let Hn denote the empirical cdf of X1, X2, ..., Xn, which are assumed
i.i.d. with density hθ,f and cdf H . Let

h̃n(x) = (cnsn)−1
∫

K((cnsn)−1(x − y))dH(y).

Let Bn(x) = n1/2[Hn(x) − H(x)], then

sup
x

|ĥn(x) − h̃n(x)| = sup
x

n−1/2(cnsn)−1
∣∣∣∣∫ K((cnsn)−1(x − y))dBn(y)

∣∣∣∣
≤ n−1/2(cnsn)−1 sup

x
|Bn(x)|

∫
|K′(x)|dx

p→ 0. (11)

Suppose [a, b] is an interval that contains the support of K , then

sup
x

|h̃n(x) − hθ,f (x)| = sup
x

∣∣∣∣∫ K(t)hθ,f (x − cnsnt)dt − hθ,f (x)
∣∣∣∣

= sup
x

∣∣∣∣hθ,f (x − cnsnξ)
∫

K(t)dt − hθ,f (x)
∣∣∣∣ , with ξ ∈ [a, b]

≤ sup
x

sup
t∈[a,b]

|hθ,f (x − cnsnt) − hθ,f (x)| p→ 0 (12)
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From (11) and (12), we have

sup
x

|ĥn(x) − hθ,f (x)| p→ 0.

From an argument similar to the proof of Theorem 1, ‖ĥ1/2
n (x) − h

1/2
θ,f

(x)‖ p→ 0 and

supt∈� ‖h
t,f (t,ĥn) − ht,f (t,hθ,f

)‖ → 0 as n → ∞. By Theorem 1, T (ĥn)
p→ T (hθ,f ) as n → ∞.

�

Proof of Theorem 3. Let

D(θ, g) =
∫

ṡθ,g(x)g1/2(x)dx =< ṡθ,g, g
1/2 >,

and it follows that D(T (hθ,f ), hθ,f ) = 0, D(T (ĥn), ĥn) = 0, and therefore

0 = D(T (ĥn), ĥn) − D(T (hθ,f ), hθ,f )

= [D(T (ĥn), ĥn) − D(T (hθ,f ), ĥn)] + [D(T (hθ,f ), ĥn) − D(T (hθ,f ), hθ,f )].

Since the map θ �→ sθ,g satisfies (8) and (9), D(θ, g) is differentiable in θ with derivative

Ḋ(θ, g) =< s̈θ,g, g
1/2 >

that is continuous in θ. Then,

D(T (ĥn), ĥn) − D(T (hθ,f ), ĥn) = (T (ĥn) − T (hθ,f ))Ḋ(T (hθ,f ), ĥn) + op(T (ĥn) − T (hθ,f )).

With θ = T (hθ,f ),

D(T (hθ,f ), ĥn) − D(T (hθ,f ), hθ,f ) = < ṡθ,ĥn
, ĥ1/2

n > − < ṡθ,hθ,f

, h
1/2
θ,f

>

= 2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2
θ,f

> + < ṡθ,ĥn
− ṡθ,hθ,f

, ĥ1/2
n

− h
1/2
θ,f

> + < ṡθ,ĥn
, h

1/2
θ,f

> − < ĥ1/2
n , ṡθ,hθ,f

>

= 2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2
θ,f

> +[< ṡθ,ĥn
, h

1/2
θ,f

>

− < ĥ1/2
n , ṡθ,hθ,f

>] + O(‖ṡθ,ĥn

− ṡθ,hθ,f

‖ · ‖ĥ1/2
n − h

1/2
θ,f

‖)

= 2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2
θ,f

> +op(‖ĥ1/2
n − h

1/2
θ,f

‖).

Applying the algebraic identity

b1/2 − a1/2 = (b − a)/(2a1/2) − (b − a)2/[2a1/2(b1/2 + a1/2)2],
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we have that

n1/2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2
θ,f

> = n1/2
∫

ṡθ,hθ,f

(x)
ĥn(x) − hθ,f (x)

2h
1/2
θ,f

(x)
dx + Rn

= n1/2
∫

ṡθ,hθ,f

(x)
ĥn(x)

2h
1/2
θ,f

(x)
dx + Rn

= n1/2 · 1
n

n∑
i=1

ṡθ,hθ,f

(Xi)

2h
1/2
θ,f

(Xi)
+ op(1) + Rn

with |Rn| ≤ n1/2 ∫ |ṡθ,h
θ,f

(x)|

2h
3/2

θ,f
(x)

[ĥn(x) − hθ,f (x)]2dx
p→ 0. Since < s̈θ,hθ,f

, h
1/2
θ,f

> is assumed to

be invertible, then

T (ĥn) − T (hθ,f ) = −[
< s̈θ,hθ,f

, h
1/2
θ,f

>−1 +op(1)
]1
n

n∑
i=1

ṡθ,hθ,f

(Xi)

h
1/2
θ,f

(Xi)
+ op(n−1/2)

and therefore, the asymptotic distribution of n1/2(T (ĥn) − T (hθ,f )) is N(0, �) with variance
matrix � defined by

� =< s̈θ,hθ,f

, h
1/2
θ,f

>−1< ṡθ,hθ,f

, ṡTθ,hθ,f

>< s̈θ,hθ,f

, h
1/2
θ,f

>−1 .

�

ACKNOWLEDGEMENTS
The authors would like to thank the editors and two anonymous referees for their valuable com-
ments and suggestions, which greatly improved this article.

BIBLIOGRAPHY
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate—A practical and powerful ap-

proach to multiple testing. Journal of the Royal Statistical Society: Series B, 57(1), 289–300.
Beran, R. (1977). Minimum Hellinger distance estimates for parametric models. Annals of Statistics, 5,

445–463.
Bordes, L., Delmas, C., & Vandekerkhove, P. (2006). Semiparametric estimation of a two-component mixture

model where one-component is known. Scandinavian Journal of Statistics, 33, 733–752.
Botev, Z. I., Grotowski, J. F., & Kroese, D. P. (2010). Kernel density estimation via diffusion. Annals of

Statistics, 2010, 2916–2957.
Donoho, D. L. & Liu, D. C. (1988). The automatic robustness of minimum distance functionals. Annals of

Statistics, 16(2), 552–586.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenic, 7, Part II,

179–188.
García-Escudero, L. A., Gordaliza, A., & Matrán, C. (2003). Trimming tools in exploratory data analysis.

Journal of Computational and Graphical Statistics, 12(2), 434–449.
García-Escudero, L. A., Gordaliza, A., Matrán, C., & Mayo-Iscar, A. (2008). A general trimming approach

to robust cluster analysis. The Annals of Statistics, 36(3), 1324–1345.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2014 SEMIPARAMETRIC MIXTURE MODEL 267

García-Escudero, L. A., Gordaliza, A., Matrán, C., & Mayo-Iscar, A. (2010). A review of robust clustering
methods. Advances in Data Analysis and Classification, 4(2), 89–109.

Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B.,
Esteller, M., Kallioniemi, O.P., Wilfond, B., Borg, A., & Trent, J. (2001). Gene-expression profiles in
hereditary breast cancer. New England Journal of Medicine, 344, 539–548.

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Nelder-
Mead simplex method in low dimensions. SIAM Journal of Optimization, 9(1), 112–147.

Langaas, M., Lindqvist, B. H., & Ferkingstad, E. (2005). Estimating the proportion of true null hypotheses,
with application to DNA microarray data. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2), 555–572.

Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance estimation
and related methods. Annals of Statistics, 22, 1081–1114.

McLachlan, G. J., Bean, R. W., & Jones, L. B. (2006). A simple implementation of a normal mixture approach
to differential gene expression in multiclass microarrays. Bioinformatics, 22, 1608–1615.

McLachlan, G. J. & Wockner, L. (2010). Use of mixture models in multiple hypothesis testing with applica-
tions in bioinformatics. In Classification as a Tool for Research: Proceedings of the 11th IFCS Biennial
Conference and 33rd Annual Conference of the Gesellschaft fr Klassifikation, Locarek-Junge, H. &
Weihs, C., editors. Springer-Verlag, Heidelberg, pp. 177–184.

Punzo, A. & McNicholas, P. D. (2013). Outlier detection via parsimonious mixtures of contaminated Gaussian
distributions. ArXiv:1305.4669.

Song, J. & Nicolae, D. L. (2009). A sequential clustering algorithm with applications to gene expression
data. Journal of the Korean Statistical Society, 38, 175–184.

Song, S., Nicolae, D. L., & Song, J. (2010). Estimating the mixing proportion in a semiparametric mixture
model. Computational Statistics and Data Analysis, 54, 2276–2283.

Storey, J. D. & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the
National Academy of Sciences of the United States of America, 111, 3889–3894.

Swanepoel, J. W. H. (1999). The limiting behavior of a modified maximal symmetric 2s-spacing with
applications. Annals of Statistics, 27, 24–35.

Wu, J. & Karunamuni, R. J. (2014). Profile Hellinger distance estimation. Statistics Invited for revision.

Received 29 June 2013
Accepted 10 February 2014

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique


